The Internet of Things (IoT) and Big Data offer companies the ability to aggregate existing data sources, gain visibility into new data, and identify patterns through analytics to make better business decisions.
According to a recent survey report conducted by the Aberdeen Group, “Best-in-Class” companies are increasingly using IoT and Big Data to implement Predictive Maintenance (PdM) models to address and improve their top operational challenges:
• Reduce unplanned downtime to 3.5% – Amount of unscheduled downtime against total availability
• Improve Overall Equipment Effectiveness to 89% – Availability x Performance x Quality = OEE
• Reduce maintenance costs by 13% YoY – Total maintenance costs including time and personnel
• Increase return on assets (RoA) by 24% – Profit earned from equipment resources through improved uptime
Any industry that operates “machinery” – manufacturing, transportation, building automation – can benefit from PdM enabled by sensor-generated data. The image to the right illustrates the amount of time that it takes to detect a potential failure interval for each of the four maintenance models commonly used today. PdM enables you to save time and money by detecting the failure based on data sources before damage to the machine occurs. Click the image to enlarge.
Follow these 6 best practice steps to plan your PdM implementation
1 | Establish the business case for PdM
To make the case for a PdM implementation, the focus should be on the unique problems that affect optimizing operational and production impacts while managing risk. It’s important to understand what metrics the organization is focusing on and which need to be improved. Consider these questions to identify key goals of your PdM project and ensure success:
• What critical assets are likely to fail? When and why do we believe they will fail?
• How would the assets’ failure impact personnel, operations or production costs? What does downtime cost?
• How can data driven decisions be integrated within the constraints of your existing maintenance practices?
2 | Identify and prioritize data sources
The increase in asset connectivity and use of smart devices may have generated large amounts of available data. It is not needed or recommended to address this whole universe of possible data. Instead, begin to predict failures on a single asset by focusing on the usable, existing data sources related specifically to it. The above PdM motor vibration analysis example illustrates how capturing the realtime data from just one sensor could result in avoiding costly damage, downtime and emergency response. Below is a list of the various types of data sources available and where they are typically found.
| Type
|
Real Time Structured / Unstructured
(Streaming from asset) |
Big Data (Batch) Structured
(Databases, systems) |
Big Data (Batch) Unstructured
(Free-form, raw text) |
| What | Measurement, control, videos temperature, sequences, tweets, telematics, environmental, | Asset name, location, production line information, spares inventory, costs | Inspection reports, maintenance and operator logs, survey reports |
| Where | Sensors, PLCs, DCS, HMI, SCADA systems, drives, controls, instruments | ERP, EAM, MES systems, ICS databases, SCADA, financial systems, data warehouses | Business systems, workstations, email, social media, notes |
3 | Collect selected data
The selected data may reside in disparate locations from a device at the network edge to the server room to the enterprise cloud, including sensors, meters, enterprise asset management systems, and supervisory control and data acquisition (SCADA) systems. An Ideal PdM solution should be flexible enough to enable you to collect from all of these data sources to learn and continually make better, more informed business decisions. The Dell Edge Gateway is an industrial-grade, scalable solution for the Edge which works with a variety of critical protocols, data sources, and types of data.
4 | Determine where to run your analytics
Establish an advanced analytics foundation based on your specific operation. For example, Edge (or local) and Cloud analytics can be balanced to reduce the burden of streaming perishable PdM data on your cloud deployment. A distributed approach enables you to detect and respond to local events at the edge as they happen, taking action immediately on streaming data, while simultaneously integrating additional data sources in the cloud. The Dell Edge Gateway can analyze streaming data in memory for real time response and filter out unnecessary data rather than relaying it to the cloud.
5 | Combine and interrogate data to gain precise insights
Start by analyzing available data to define the parameters of normal operation for a machine. This enables the creation of rules through condition monitoring for analyzing the real-time data coming directly from machine sensors on the Dell Edge Gateway. With the Edge Gateway, analytics can happen as close to the machine as possible with the native I/O to collect data from industrial equipment and the ability to operate in harsh environments. After analyzing the real-time data, add historical and third party data such as reliability models and logs to uncover meaningful correlations, patterns and trends with the anomalies generated by the real-time data rules, to signal potential failures. The patterns can be used to further refine your rules and offer actionable insights in real time.
6 | Make operational and take action
Turn insights into action by integrating an aggregated risk assessment for all assets into your operation through a single dashboard. For example, when a potential problem is uncovered the Dell Edge Gateway triggers an event that allows you to send out automated alerts to concerned parties, such as location, estimated replacement parts and recommended corrective action to avoid a catastrophic event. Then, by capturing wear characteristics data from the replaced parts, you are able to continuously refine your PdM models and learn from performance insights. Finally, explore additional uses for your PdM data such as automating inspection reports and enhancing component supplier evaluation.
Predictive Maintenance Solution
This PdM Solution example represents a single solution provided by the industry leading partners below as a reference.Your specific PdM application may involve a combination of these and other technology providers within our IoT Partner ecosystem.
To provide a blueprint for you to build your PdM deployment around, Dell has developed a flexible architecture centered around the Edge Gateway 5000 with qualified partners for a complete solution. The Dell Edge Gateway 5000 enables you to collect, analyze, relay, and act on real-time data from machine sensors and generate accurate, dynamic predictions.


